

AI4Agri

Developing green and digital skills towards AI use in agriculture

Project Number: 2023-1-PL01-KA220-VET-000160825

Erasmus+

KA220-VET - Cooperation partnerships in vocational education and training

Work package n°4 - Exploiting AI use in agriculture & Policy recommendations

National Policy Report

Developed by

ThinkOnception & YET

July 2025

National Policy Report: ThinkOnception, Greece

Prepared for: WP4

Date: 31/07/2025

Executive Summary

The AI4Agri Policy Roundtable, conducted in July 2025 in Greece, engaged eight participants—primarily farmers and representatives of agricultural cooperatives—to gather insights on the adoption of AI in agriculture. The discussion reveal a mixed level of familiarity with AI applications, with some already using some digital tools and the remainder not yet adopting them.

Key barriers identified include high investment costs, gaps in digital infrastructure, skills and awareness, and unclear regulations. Internet connectivity was rated as satisfactory by some participants while the rest cited poor or limited coverage, with over a third indicating that connectivity issues impact their ability to use smart technologies. Awareness of public funding and CAP schemes is limited, with uncertainty of available support. The participants highlighted the need for public-private partnerships to develop smart infrastructure, improved access to digital equipment, and cooperative models for shared AI services, which received full endorsement from participants.

On capacity-building, participants prioritised practical and context-specific training, such as support from agricultural application services, on-field demonstrations, and virtual courses. Universities and private tech companies were equally identified as appropriate leaders for training initiatives, followed by agricultural service providers.

Concerns focused on transparency in AI decision-making, bias and fairness, and data privacy, though most participants would support open data initiatives if privacy is safeguarded. For measuring success, farmer income growth, environmental benefits, reduced input use, and improved training and adaptation were cited as key indicators.

There was strong willingness to participate in AI pilot programmes and universal support for citizen monitoring platforms. Participants saw AI as a valuable enabler for Green Deal objectives, including resource optimisation, accurate forecasting, greenhouse gas reduction, biodiversity monitoring, and circular economy practices. However, they emphasised that achieving these benefits will require targeted investments in infrastructure, subsidies, tailored training, and policies ensuring transparency, equity, and sustainability.

Policy Context

Agriculture is central to the European Green Deal's climate and biodiversity objectives. AI technologies can enhance productivity, reduce environmental impact, and enable precision farming. Yet, access remains unequal across EU member states and farming communities.

CONTENTS

1.	0	
2.	0	
3.	0	
4.	1	
5.	2	
6.	2	
7.	2	
7.1	Infrastructure Investment.....	2
7.2	Financial Support Mechanisms	3
7.3	Capacity Building and Training.....	3
7.4	Open Data and Interoperability	3
7.5	Ethical and Regulatory Clarity.....	3
8.	3	
9.	4	
	Photos	4
	Participants list.....	5
	Stakeholders Survey Report.....	5
	Evaluation Report	5

1. INTRODUCTION AND GENERAL PERCEPTIONS

The AI4Agri Policy Roundtable in Greece, conducted in July 2025, was held under WP4: Exploiting AI Use in Agriculture & Policy Recommendations of the Erasmus+ project “AI4Agri: Developing green and digital skills towards AI use in agriculture” (Project Number: 2023-1-PL01-KA220-VET-000160825).

Specifically, the majority of the participants mentioned that they are farmers and the rest stated that they were members of a cooperative. In terms of using digital tools for their respective agricultural activities, during the discussion, some participants stated that they are using digital tools while others stated that they have not used digital tools. Regarding familiarity with AI tools in agriculture, a few of the participants stated that they are moderately familiar with AI applications in agriculture but need further elaboration on them, while other participants stated that they are slightly familiar and only a small number stated that they are very familiar with them. This signifies the need for further education and training in professionals in the agricultural sector when it comes to AI applications in it.

The roundtable revealed insight from key stakeholders on the challenges, opportunities, and recommendations for increasing the accessibility and impact of AI technologies in agriculture, in alignment with the European Green Deal and Common Agricultural Policy (CAP) objectives.

It is worth to note that this is one part from the input of the country as there are two Greek partners who divided the work among them. 8 participants participated in the survey and the roundtable.

2. KEY BARRIERS TO AI ACCESSIBILITY

During the roundtable, there was discussion about which were the key barriers to the access of the participants to AI applications, and a number of interconnected issues were raised. The majority of the participants stated that a major barrier to their access is the high cost of adopting AI applications in their professional activities. As most of the participants represented an age demographic that is generally more conversant with digital technologies, they showed great interest in learning more about potential benefits of AI in agriculture.

However, an issue that came up as a potential first obstacle was the lack of the necessary digital infrastructure (for example, stable and fast internet) in the area where they hold their professional activities, thus making adding AI technologies far more difficult of an achievement. Even though most participants mentioned that the digital infrastructure in their area was either adequate or even good, concern was expressed on whether it is enough for potential AI applications to their professional activities as many were not sure whether limited connectivity would present a major issue in applying smart technologies or were adamant that it affects them. This signifies that the lack of application of AI technologies in agriculture, aside from a challenge for each individual for different reasons (cost, lack of training etc), is also a systemic challenge rooted in fundamental country infrastructure issues.

As another point, a general takeaway from the discussion was that a major barrier is the lack of adequate training in both relevant digital skills and specifically AI applications in agriculture. While the participants expressed that they were familiar with some technologies in agriculture, most of them pointed out that there is a significant need for further training on AI applications. At the same time, the discussion revealed that the majority of the participants either were not sure or were not aware at all of any public funding or CAP schemes that support the use of AI in agriculture, and the ones that were aware of some, reiterated that there was a need for both higher awareness and actual relevant training. Finally, an issue that was discussed as a point that needed clarification was the regulations governing AI uses as well as the security of the data collected.

3. INFRASTRUCTURE AND FINANCIAL NEEDS

As mentioned already, adequate infrastructure is necessary in supporting the use of AI technologies in agriculture. Even though connectivity is important, the participants focused more on the necessity of digital equipment and the access of professionals to it. Equipment is a major issue even for those who are willing to use AI to their professional activities as it is considered costly and high risk as an investment. Therefore, the participants were very positive when discussing the possibility of leasing AI-enabled equipment and indicated that it would be a solution that they would be interested to know more about.

Participants also indicated the need for public-private partnerships to develop smart infrastructure as the main improvement that is needed in their area to support AI adoption. Additionally, all participants showed increased interest in the creation of shared AI services or cooperative digital platforms for farmers as they find peer-to-peer communication effective. Subscription to shared digital services was also mentioned and discussed as another cost-effective means of supporting the farmers in potential use of AI technologies.

During the discussion however, the majority of the participants stated that they feel they would benefit more from direct grants to improve their equipment as well as training grants with a goal of educating themselves further regarding AI uses and how they would reflect on their professional activities financially and technically, while some expressed more interest in collaborative digital tools.

4. EDUCATION

The discussion revealed that most participants considered support from agricultural application services to be the most appropriate form of training to help them utilize AI tools effectively. In addition, many participants expressed interest in practical approaches such as on-field demonstrations and virtual classes, while a smaller group preferred peer learning sessions as a means of knowledge exchange.

In terms of suitable providers of training and education, participants were divided between universities and private technology companies, with a smaller portion identifying agricultural application services as the most appropriate leaders in this area. This suggests that a collaborative and practical approach involving multiple stakeholders may be most effective in building capacity among farmers and agricultural professionals.

As a primary concern, the majority of respondents emphasised the lack of transparency in AI decision-making reflecting the lack of awareness about how recommendations and outcomes are generated. Other important issues raised included bias and fairness, data privacy, and, to a lesser extent, dependence on technology. This points to the need for the establishment of clear frameworks to ensure responsible AI adoption. However, most participants expressed support for open data initiatives, provided that adequate protections for data privacy are ensured.

In terms of AI uses in agriculture, participants identified several environmental benefits such as optimisation of the use of natural resources, the improvement of soil health, and the protection of biodiversity. AI was also connected to the reduction of greenhouse gas emissions, more accurate weather and hazard forecasting, and the ability to support automation and precision farming. Collectively, these applications were viewed as contributing both to higher agricultural productivity and to more sustainable resource management.

The participants were not fully aware of the European Green Deal or what it entails, further highlighting the need for raising awareness and informing the public of its main objectives and how it connects to them. However, several points where AI could contribute to these objectives were identified. Participants pointed out that AI can strengthen sustainability efforts through carbon and greenhouse gas emission monitoring, energy consumption forecasting, improved integration of renewable energy sources as well as the design of efficient AI systems with lower environmental footprints.

In terms of circular economy, while most participants had a general idea of the main notions of circular economy, they were not aware of direct ways in which AI can contribute to it, it was recognised that it could contribute to smart sorting and recycling, optimize waste collection and logistics, monitor resource flows, and support product life extension strategies.

Regarding biodiversity and environmental monitoring, even though the connection between them and AI were initially not clear to the participants, it was discussed that applications could include species identification, monitoring of invasive species, soil analysis, and satellite-based land use monitoring. AI can also support regenerative agriculture and enable the verification of carbon credits through soil carbon measurement.

As a general point of discussion based on the above points, it was recognised that while the potential of AI is significant, there were also major barriers hindering adoption. High investment costs and limited funding were consistently identified as key issues, alongside insufficient digital infrastructure in some areas. A lack of technical skills was identified as an additional limitation, with respondents expressing uncertainty over the accuracy and reliability of available systems. Additional concerns included difficulties in managing large volumes of data and limited capacity for effective product comparisons. Together, these challenges highlight the need for targeted financial, educational, and infrastructural support by different stakeholders.

To overcome these barriers, participants emphasized the importance of a supportive ecosystem for AI adoption. Infrastructure investments and accessible training opportunities were identified as priorities, while financial incentives such as subsidies were seen as essential to reduce entry costs. Policy measures and structured training programs, including seminars and workshops, were also suggested as effective means of building professionals' capacity and encouraging use of AI in their professional activities.

5. MONITORING AND EVALUATION

During the roundtable, it was generally agreed that AI uses must be monitored and evaluated via a number of indicators, to better capture points AI use impact and indicate where improvement is needed.

A number of indicators were discussed, with the majority of participants stating that crop yields should be a major indicator for the success of AI uses in agriculture. The majority also indicated environmental benefits as another indicator as well as the reduction in input use. Training and subsequent adaptation was also mentioned and a smaller number stated that an important indicator should also be the income of the farmers.

In terms of participation in pilot programs, the majority was open to participating with only a small percentage expressing uncertainty. However, all participants stated that they would support citizen monitoring platforms that use AI for environmental data collection.

6. MULTI-STAKEHOLDER ENGAGEMENT

While most of the participants were farmers and members of cooperatives, there was diverse representation amongst them in terms of age, background, education etc. The participants were also either working for larger agricultural companies, while others were either owners of or employees of smaller or medium enterprises. This wide range of professional background made the discussion more compelling as different opinions were voiced over the roundtable topics: major obstacles as well as gaps in training and professional needs were discussed from a multitude of perspectives, making the discussion multi-faceted.

7. POLICY RECOMMENDATIONS

7.1 INFRASTRUCTURE INVESTMENT

- Improvement of connectivity in agricultural areas where AI use could be used.

- Potential lease or supply of relevant basic equipment that supports AI applications as a “start-up kit”.
- Development of collaborative tools and platforms amongst agricultural professionals to showcase potential AI applications in the field.

7.2 FINANCIAL SUPPORT MECHANISMS

- Creation of digital hubs or cooperative platforms by public-private partnerships with the purpose of allowing agricultural professionals access to AI-driven services at reduced rates.
- Creation of government-funded grant program that co-finances AI adoption covering costs partially for AI-enabled machinery, software, and training.
- Collaboration of small and medium enterprises with research institutions to develop solutions that cost less and better fit their needs.

7.3 CAPACITY BUILDING AND TRAINING

- Nationally funded workshops and online courses that teach farmers the basics of AI applications in a practical and simple manner.
- Creation of peer-to-peer networks where experienced farmers share their knowledge of AI tools with beginners.
- Training of farmers and agricultural professionals by relevant research institutions
- Provision of advisory services from experts specializing in AI uses via agricultural extension services

7.4 OPEN DATA AND INTEROPERABILITY

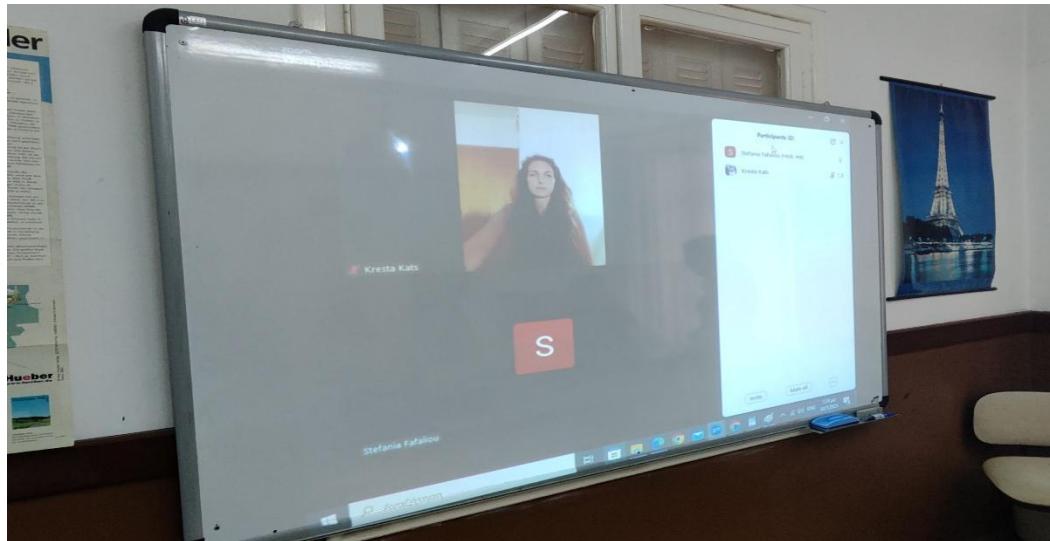
- Introduction of a clear set of rules regarding
- Development of a national system of data recording and sharing with the purpose of inclusion in a centralised open database.

7.5 ETHICAL AND REGULATORY CLARITY

- Definition and enforcement of rules regulating data ownership and consent – farmers own their data and give consent before it is shared.
- Creation of clear data governance frameworks and creation of relevant regulatory bodies to monitor compliance.
- Development of ethical guidelines for use of AI tools.

8. CONCLUSION

The AI4Agri Roundtable in Greece highlights both the opportunities and challenges of integrating AI into Greek agriculture. Participants acknowledged AI’s potential to optimise resources, improve productivity, protect biodiversity, and enhance sustainability, while also noting barriers such as high investment costs, limited funding, insufficient digital infrastructure, low awareness of potential uses, and lack of relevant technical skills that would help uptake.


It was found that a framework addressing these challenges was essential to potential use of AI in agriculture, one that would combine infrastructure investments, financial schemes/incentives, and practical training delivered by relevant institutions, especially to small and medium enterprises that would be beginners to these applications. Ethical and regulatory frameworks were also identified as equally important to safeguard transparency, fairness, and data privacy. Participants also expressed a heightened interest to adopt AI, particularly through cooperative models, open data initiatives with privacy protections, and participation in pilot programmes.

This openness provides a foundation for policymakers, researchers, and technology providers to build upon. By implementing targeted measures in education, infrastructure, and governance, Greek agriculture can become the field in which AI can use its transformative potential for modernisation, strengthening of resilience, and sustainable growth.

9. ATTACHMENTS

PHOTOS

PARTICIPANTS LIST

STAKEHOLDERS SURVEY REPORT

EVALUATION REPORT

National Policy Report: YET, Greece

Prepared by: Vassilis Tsoulis, Nasos Panagiotidis

Prepared for: WP4

Date: 28/08/2025

Executive Summary

The AI4Agri Policy Roundtable, conducted in Northern Greece in July 2025, engaged eight key stakeholders to gather insights on the adoption of AI. Participants included farmers (37.5%), representatives from cooperatives (25%), the tech sector (25%), and VET trainers (12.5%).

The discussion revealed a high level of digital adoption, with 100% of respondents already using AI or digital tools. However, familiarity with specific AI applications was varied, with 50% describing it as moderate, 25% as very familiar, and 25% as slightly familiar.

Key barriers to AI accessibility were unanimously identified by all participants as cost, lack of digital infrastructure, lack of training/skills, and lack of awareness. A majority (62.5%) also cited unclear regulations as an obstacle. Internet connectivity was widely seen as a challenge, with 87.5% rating it as "Fair" and 12.5% as "Poor". Furthermore, a majority (62.5%) were unsure about available public funding or CAP schemes for AI adoption.

To address these challenges, participants unanimously endorsed public-private partnerships to develop smart infrastructure. There was also strong support for cooperative models, such as shared AI services and digital platforms (87.5% support), and a high willingness to lease equipment (87.5%). Direct grants were overwhelmingly identified as the most helpful form of financial support (87.5%).

On capacity-building, participants prioritized practical training, with 87.5% favoring field demonstrations. Agricultural extension services were seen as the most appropriate leaders for training initiatives (75%). The primary concern regarding AI use, cited by 100% of participants, was a future dependence on technology. Despite this, most would support open data initiatives if privacy is protected.

For measuring success, reduction in input use (100%), farmer income growth (100%), and environmental benefits (87.5%) were cited as the most important indicators. There was a unanimous willingness to participate in AI pilot programs. Participants saw AI as a valuable tool for achieving Green Deal objectives, including resource optimization, soil health management, and biodiversity monitoring. They emphasized that achieving these benefits requires targeted investments, subsidies, practical training, and clear policies.

Policy Context

Agriculture is central to the European Green Deal's climate and biodiversity objectives. AI technologies can enhance productivity, reduce environmental impact, and enable precision farming. Yet, significant barriers to adoption remain, including challenges in digital readiness, equitable access to technology, and the need for effective policies, particularly for the small and medium-sized farms common in Southern Europe.

CONTENTS

1. Introduction and General Perceptions	0
2. Key Barriers to AI Accessibility	0
3. Infrastructure and Financial Needs	1
4. Education	1
5. Monitoring and Evaluation	2
6. Multi-Stakeholder Engagement	2
7. Policy Recommendations	2
7.1 Infrastructure Investment	2
7.2 Financial Support Mechanisms	2
7.3 Capacity Building and Training	3
7.4 Open Data and Interoperability	3
7.5 Ethical and Regulatory Clarity	3
8. Conclusion	3
9. Attachments	3
Photos	3
Participants list	5
Stakeholders Survey Report	5
Evaluation Report	5

1. INTRODUCTION AND GENERAL PERCEPTIONS

The AI4Agri Policy Roundtable in Greece, conducted in July 2025, was held under WP4: Exploiting AI Use in Agriculture & Policy Recommendations of the Erasmus+ project “AI4Agri: Developing green and digital skills towards AI use in agriculture” (Project Number: 2023-1-PL01-KA220-VET-000160825). The event gathered eight key stakeholders to provide crucial feedback on the opportunities, obstacles, and support mechanisms needed for successful AI adoption in the Greek agricultural sector. The participants represented a diverse cross-section of the industry, including farmers (37.5%), cooperatives (25%), the tech sector (25%), and VET trainers (12.5%).

In terms of digital readiness, all participants (100%) confirmed they are currently using AI or digital tools in their agricultural activities, indicating a strong baseline of digital engagement. Regarding familiarity with specific AI applications in agriculture, 50% of participants described themselves as moderately familiar, while the other half was evenly split between being very familiar (25%) and slightly familiar (25%). The roundtable revealed valuable insights from these key stakeholders on the challenges and recommendations for increasing the accessibility and impact of AI technologies, in alignment with the European Green Deal and Common Agricultural Policy (CAP) objectives.

2. KEY BARRIERS TO AI ACCESSIBILITY

During the roundtable, participants unanimously agreed on several key barriers hindering their access to AI applications. All respondents (100%) identified the following as significant challenges:

- **Cost:** High investment costs for AI-enabled equipment and software.
- **Lack of digital infrastructure:** This was a major concern, particularly regarding internet access in farming regions.
- **Lack of training/skills:** A need for more technical skills and qualified personnel was reported.
- **Lack of awareness:** Insufficient information about the potential benefits and applications of AI tools.

In addition, a majority of participants (62.5%) pointed to **unclear regulations** as another barrier to adoption.

The concerns about infrastructure were further detailed by participant ratings of internet connectivity in their regions, with 87.5% describing it as "Fair" and 12.5% as "Poor". No participant rated the connectivity as "Good" or "Excellent". Consequently, 37.5% confirmed that limited connectivity affects their ability to use smart technologies, while a significant portion (62.5%) were unsure of its full impact.

The discussion also revealed a knowledge gap regarding financial support. A majority (62.5%) were unsure if any public funding or CAP schemes exist to support AI adoption, while only 37.5% were aware of such programs. This highlights that a lack of accessible information is a systemic challenge rooted in both infrastructure and awareness issues.

3. INFRASTRUCTURE AND FINANCIAL NEEDS

To support the adoption of AI technologies, participants unanimously agreed that **public-private partnerships for developing smart infrastructure** are the most critical improvement needed in their areas. This reflects the widespread view that foundational infrastructure is a prerequisite for any meaningful progress.

Beyond infrastructure, participants showed strong interest in alternative, collaborative models to overcome the high cost of entry.

- A strong majority (87.5%) support the creation of **shared AI services or cooperative digital platforms** for farmers.
- An equal number (87.5%) expressed a willingness to **lease AI-enabled equipment or subscribe to shared digital services** as a cost-effective alternative to direct purchase.

Regarding direct financial aid, **direct grants** were overwhelmingly identified as the most helpful form of support by 87.5% of respondents. A smaller group (12.5%) also saw value in funding for **cooperative digital tools**.

4. EDUCATION

The discussion on education and training revealed a strong preference for practical, hands-on learning approaches.

- **Field demonstrations** were chosen by 87.5% of participants as the most helpful type of training to adopt AI tools.
- **Peer learning sessions** were also seen as valuable by 12.5% of respondents.

When asked who should lead these capacity-building efforts, a large majority (75%) believe that **agricultural extension services** are the most appropriate institutions. Private tech companies were also identified as potential leaders by 25% of participants.

The primary ethical concern raised by all participants (100%) was the potential for an **over-dependence on technology**. Despite this, there is strong support for data-driven innovation, as 87.5% of respondents would support **open data initiatives**, provided that data privacy is protected.

Participants identified numerous ways AI could contribute to environmental sustainability and Green Deal objectives, including:

- **Agriculture:** Optimizing the use of natural resources, improving soil health, monitoring biodiversity, and reducing greenhouse gas emissions.
- **Energy and Climate Action:** Forecasting energy consumption and designing lightweight AI models that use renewable energy.
- **Circular Economy:** Using machine vision for smart sorting and recycling and optimizing waste collection logistics.
- **Biodiversity Monitoring:** Identifying species, monitoring invasive species, and analyzing soil health through remote sensing.

5. MONITORING AND EVALUATION

To measure the success of AI implementation in agriculture, participants agreed that a set of clear indicators is necessary. The indicators selected were:

- **Reduction in input use** (e.g., water, fertilizer) (100% of respondents).
- **Farmer income growth** (100% of respondents).
- **Environmental benefits** (87.5% of respondents).
- **Increase in yields** (50% of respondents).
- **Training and adoption rates** (37.5% of respondents)

Other important metrics included an increase in yields (50%) and tracking training and adoption rates (37.5%).

There is a remarkable and unanimous willingness (100%) among participants to engage in **pilot programs or case studies** on AI use. This signals a strong desire for practical experimentation and learning. Additionally, a large majority (87.5%) would support **citizen monitoring platforms** that use AI for environmental data collection.

6. MULTI-STAKEHOLDER ENGAGEMENT

The roundtable successfully gathered a diverse group of professionals whose combined expertise enriched the discussion. Participants came from a range of sectors, including Agriculture (62.5%), AI and technology (25%), and VET and general education (12.5%). The roles represented included farmers, members of cooperatives, technology companies, and VET trainers. This wide range of professional backgrounds ensured that challenges and opportunities were examined from multiple perspectives, leading to a multi-faceted and comprehensive dialogue. The event evaluation confirmed that all participants felt their input was valued and heard, and that diverse perspectives were adequately represented.

7. POLICY RECOMMENDATIONS

7.1 INFRASTRUCTURE INVESTMENT

- Foster **public-private partnerships** to fund and develop shared smart infrastructure, a need unanimously supported by stakeholders.
- Support the creation of **cooperative digital platforms** that allow farmers to share data and access AI tools collectively, which received 87.5% support

7.2 FINANCIAL SUPPORT MECHANISMS

- Establish a government-funded **direct grant program**, the preferred support mechanism for 87.5% of stakeholders, to co-finance the adoption of AI-enabled machinery, software, and training.
- Create financial incentives and support for **equipment leasing programs and subscription-based services**, which 87.5% of participants were willing to use.

7.3 CAPACITY BUILDING AND TRAINING

- Develop and fund practical, hands-on training programs, with a focus on **field demonstrations**, which 87.5% of participants found most helpful.
- Empower **agricultural extension services** to lead AI training and advisory efforts, as recommended by 75% of stakeholders.
- Promote peer-to-peer learning networks to facilitate knowledge sharing among agricultural professionals.

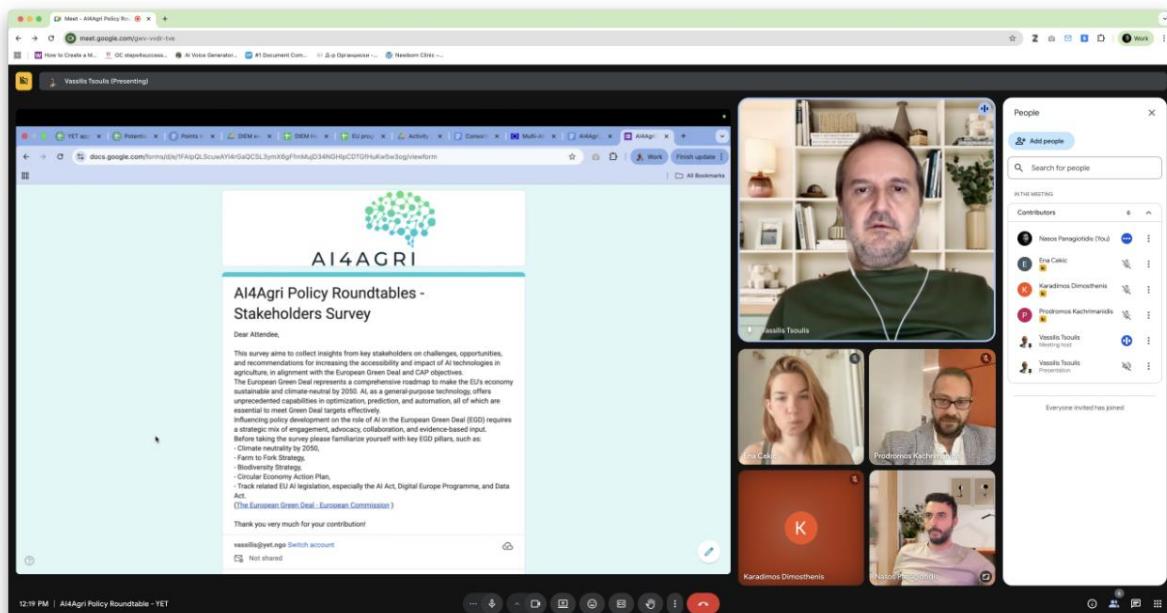
7.4 OPEN DATA AND INTEROPERABILITY

- Develop a national data governance framework that ensures farmer data ownership and privacy, which would encourage the 87.5% of stakeholders who support **open data initiatives** under these conditions.
- Promote the use of interoperable systems and standardized data formats to facilitate seamless data sharing.

7.5 ETHICAL AND REGULATORY CLARITY

- Establish **clear regulations** governing the use of AI in agriculture to address the uncertainty cited as a barrier by 62.5% of participants.
- Develop ethical guidelines that address key concerns, particularly the **dependence on technology**, which was a unanimous concern.

8. CONCLUSION


The AI4Agri Roundtable in Greece highlights a sector that is digitally engaged but facing significant, uniform barriers to advanced AI adoption. Participants acknowledged AI's transformative potential for resource optimization, productivity, and sustainability, while clearly articulating the obstacles: prohibitive costs, inadequate digital infrastructure, and a need for practical skills and awareness.

The findings point to a clear path forward. A successful strategy must be built on a foundation of **public-private partnerships** to improve infrastructure, **direct financial support** like grants to lower entry costs, and **practical, field-based training** led by trusted bodies like agricultural extension services. The strong interest in cooperative models, leasing, and pilot programs demonstrates an eagerness to embrace innovation if the right support structures are in place.

By implementing targeted policies that address these specific needs for infrastructure, finance, and education, while also providing regulatory clarity, Greek agriculture can unlock the full potential of AI. This will foster modernization, strengthen resilience, and ensure sustainable growth in alignment with national and European Green Deal objectives.

9. ATTACHMENTS

PHOTOS

Funded by the European Union. The views and opinions expressed are solely those of the author(s) only and do not necessarily reflect those of the European Union or Foundation for the Development of the Education System. Neither the European Union nor the Foundation for the Development of the Education System can be held responsible for them.

**Co-funded by
the European Union**

PARTICIPANTS LIST

STAKEHOLDERS SURVEY REPORT

EVALUATION REPORT

AI4Agri Project website: <https://www.ai-4-agri.eu/>

AI4Agri Project e-Learning Platform: <https://ai4agri-elearning.eu/>

This publication is licensed under a Creative Commons 4.0 license. This license enables reusers to distribute, remix, adapt, and build upon the material in any medium or format for non-commercial purposes only, and only so long as attribution is given to the creator. If you remix, adapt, or build upon the material, you must license the modified material under identical terms.

CC BY-NC-SA includes the following elements:

BY: credit must be given to the creator.

NC: Only non-commercial uses of the work are permitted.

SA: Adaptations must be shared under the same terms.